ALGEBRISKĀS STRUKTŪRAS 6.lekcija

Lielums: px
Sāciet demonstrējumu ar lapu:

Download "ALGEBRISKĀS STRUKTŪRAS 6.lekcija"

Transkripts

1 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss ALGEBRISKĀS STRUKTŪRAS 6.lekcija Docētājs: Dr. P. Daugulis 2013./2014.studiju gads

2 Saturs 2 1. Grupu darbība kopās Pamatfakti Grupas darbības speciālgadījumi Orbītas un invariantās kopas Stabilizatori Īpašības mājasdarbs Obligātie uzdevumi Paaugstinātas grūtības un pētnieciska rakstura uzdevumi 15

3 3 Lekcijas mērķis: apgūt grupu darbības teorijas pamatus. Lekcijas kopsavilkums: var definēt kopu pārveidojumus, ko var identificēt ar grupas darbību kopās. Svarīgākie jēdzieni: grupas reprezentācija, grupas darbība, tranzitīva, brīva, efektīva, regulāra, primitīva darbība, orbīta, invarianta kopa, stabilizators. Svarīgākie fakti un metodes: orbītas elementu stabilizatoru īpašība, orbītu un stabilizatoru blakusklašu kopu vienlielums, Burnside lemma.

4 1. Grupu darbība kopās Pamatfakti X - kopa, Σ(X) = (Bij(X), ) - X permutāciju grupa a kompozīcija operāciju. G - grupa. Par G reprezentāciju grupā Σ(X) sauc grupu homomorfismu Φ : G Σ(X), g Φ(g) = Φ g. Vienkāršākās sekas: Φ e = id X, Φ gh = Φ g Φ h, funkciju terminos - Φ gh (x) = Φ g (Φ h (x)). Φ g (x) apzīmē ar g(x), g x vai gx. Ir definēta (G-darbība kopā X no kreisās puses) funkcija ar šādām īpašībām: G X X, (g, x) Φ g (x) = g x,

5 5 1. x X, ex = x, 2. x X, g, h G, (gh)x = g(hx). X sauc par G-kopu piezīme. G-darbība kopā X definē G-darbību kopā X n, n N pēc šāda likuma: g(x 1, x 2,..., x n ) = (gx 1, gx 2,..., gx n ) piezīme. G-darbība kopā X definē G-darbību kopā P(X) (visu X apakškopu kopā pēc šāda likuma: S X = g S = {gs s S} 1.3. piezīme. G-darbība kopā X definē G-darbību kopā Fun(X, Y ) pēc šāda likuma: 1.1. piemērs. (g f)(x) = f(g 1 x).

6 1. triviālā darbība: x X, g G, g x = x, 2. G-darbība uz G ar kreiso reizināšanu: g h = gh, 3. G-darbība uz G ar konjugāciju: g h = ghg 1, 4. Σ X darbība uz X, 5. ǧeometriskas figūras rotāciju (citu pārveidojumu) grupas darbība uz figūras, 6. GL(n, k) darbība uz lineārās telpas k n (ar matricu reizināšanu) Grupas darbības speciālgadījumi Tranzitīva darbība G-darbība ir tranzitīva, ja x, y G g G: gx = y. k-tranzitīva darbība G-darbība ir k-tranzitīva, ja 1. X k

7 2. Y = {y 1,..., y k } X, Y = k un Z = {z 1,..., z k } X, Z = k g G: gy i = z i, i. Efektīva darbība Ker(Φ) - G darbības kodols. Ker(Φ) = {e} G darbojas efektīvi. Brīva darbība G-darbība ir brīva, ja x X : g x = x = g = e. Regulāra (sharply transitive) darbība G-darbība ir regulāra, ja tā ir transitīva un brīva: x, y X! g G: gx = y. Primitīva darbība G-darbība ir primitīva, ja tā nesaglabā nekādu G sadalījumu. Dots X sadalījums apakškopās: X = X 1 X 2... X n. G-darbība saglabā šo sadalījumu, ja g G, X i,g X i = X j. 7

8 1.3. Orbītas un invariantās kopas Dota G-kopa X, x X. Kopu Gx = {gx g G} sauc par x G-orbītu. G-orbītu kopu apzīmē X/G, to sauc par dotās G-darbības faktorkopu. X = Gx, Gx Gy = Gx = Gy = G-orbītas veido x X X sadalījumu piezīme. G-darbība ir tranzitīva = ir viena G-orbīta. Y X. Y sauc par G-invariantu kopu, ja G Y = Y. Ja G = {g}, tad g sauc par G-darbības fiksēto punktu piemērs. orbīta ir invarianta kopa Stabilizatori Dota G-kopa X, x X. X g = {x X gx = x}.

9 9 G apakškopu St(x) = {g G gx = x} sauc par x-stabilizatoru (x-stabilizējošo apakšgrupu) teorēma. G-grupa, X - G-kopa, x X. Tad St(x) G. PIERĀDĪJUMS { gx = x hx = x = (gh)(x) = g(hx) = x. ex = x. gx = x = g 1 x = x = St(x) G Īpašības 1.2. teorēma. G-grupa, X - G-kopa. x 1 X un x 2 X pieder vienai G-orbītai. Tad g G : St(x 2 ) = g St(x 1 ) g 1. PIERĀDĪJUMS Pieņemsim, ka gx 1 = x 2.

10 h St(x 1 ) = ghg 1 x 2 = x 2 = g St(x 1 ) g 1 St(x 2 ). h St(x 2 ) = g 1 h gx 1 = x 1 = g 1 h g = h St(x 1 ) = h = gh g 1 g St(x 1 ) g 1 = St(x 2 ) g St(x 1 ) g 1 = St(x 2 ) = g St(x 1 ) g teorēma. G-grupa, X - G-kopa, x X. Tad 1. bijektīva funkcija f : G/St(x) Gx; 2. G, X = Gx = G St(x) ; 3. G, X = X = [G : St(a)]; PIERĀDĪJUMS 1. Definēsim ϕ : G X, ϕ(g) = gx = Im(ϕ) = Gx. a X/G Pieņemsim, ka y Im(ϕ) = g 0 G : g 0 x = y. 10

11 ϕ 1 (y) = {g G gx = y}, gx = g 0 x = g = hg 0 = ϕ 1 (y) = G/St(x). 11 = g 1 0 g = h St(x) = ir korekti definēta bijektīva funkcija f : G/St(x) Gx. 2. Seko no 1. un Lagranža teorēmas. 3. G-orbītas veido X sadalījumu X 1,..., X n, izvēlēsimies a i X i. X = n Ga i un Ga i = G St(a i ) = [G : St(a i)]. i= teorēma. (Burnside lemma) G-grupa, X - G-kopa. Tad X/G = 1 X g. G g G PIERĀDĪJUMS Apskatam kopu G X divos veidos: pa rindām un pa kolonnām, skaitīsim tādus pārus (g, x), ka gx = x: X g = St(x) = g G x X x X G Gx = G x X 1 Gx

12 12 Summēšanu pa X var sadalīt pa orbītām: ( ) G = G 1 = G X/G. ω X/G t ω 1 ω ω X/G 1.5. teorēma. G - galīga grupa, X - galīga G-kopa, kurā G-darbība ir 2-tranzitīva. Tad X g 2 = 2 G. g G PIERĀDĪJUMS Pieņemsim, ka X = {1, 2,..., n}. Apzīmēsim X i = X\{i}. Apzīmēsim elementa i stabilizatora apakšgrupu ar G i. Apskatīsim G-darbību uz kopas X 1. G-darbība ir 2-tranzitīva = G 1 -darbība ir tranzitīva uz X 1 - kopa {1, x} tiek sūtīta uz kopu {1, y} = ir 2 G 1 -orbītas: {1} un X 1. No Burnside lemmas seko 2 = 1 X g = X g = G 1 g G 1 g G 1 2 G 1.

13 13 i, X g = 2 G i = 2 G 1 - stabilizatori ir konjugēti, tāpēc g G i G i = G 1. G 1 = X = G 1 = n = n = G = G 1 n ( ) X g = 2n G 1 = 2 G. i=1 g G i g G fiksē X g elementus = tas pieder X g stabilizatoriem G i = tā fiksētie punkti tiek skaitīti X g reizes ar svaru X g = n ( ) X g = X g 2 = 2n G 1 = 2 G. i=1 g G i g G

14 2. 6.mājasdarbs Obligātie uzdevumi 6.1 X = {1,..., 6}, Σ 6 darbojas uz X kā funkcijas. Atrast visas orbītas grupai G = g. (a) g = (2, 3)(4, 5, 6); (b) g = (1, 2)(3, 4)(5, 6). 6.2 G - komutatīva grupa, X - G-kopa. Dots, ka g G, x 0 X: gx 0 = x 0. Pierādīt, ka x Gx 0 izpildās gx = x. 6.3 G - grupa. Apskatīsim G kā G-kopu, kur G darbojas ar konjugāciju: (g, x) gxg 1. Aprakstīt G elementu stabilizatorus attiecībā uz šo darbību (tos sauc arī par centralizatoriem). 6.4 Atrast x centralizatoru elementu grupā G. (a) G = Σ 4, x = (1, 2, 3, 4). (b) G = Σ 4, x = (1, 2)(3, 4). 6.5 Apskatīsim G no uzdevuma 4.6. Atrast G orbītas attiecībā uz grupas darbību ar konjugāciju.

15 2.2. Paaugstinātas grūtības un pētnieciska rakstura uzdevumi 6.6 Pierādīt, ka katrai grupai ar vismaz 3 elementiem ir vismaz viens neidentisks automorfisms. 15

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Lineārā algebra II 4.lekcija Docētājs: Dr. P. Daugulis 2012./2013.studiju

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Lineārā algebra I 5.lekcija Docētājs: Dr. P. Daugulis 2012./2013.studiju

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Polinomu algebra 3.lekcija Docētājs: Dr. P. Daugulis 2007./2008.studiju

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Polinomu algebra 2.lekcija Docētājs: Dr. P. Daugulis 2012./2013.studiju

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Maǧistra studiju

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Maǧistra studiju 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Maǧistra studiju programma Matemātika Studiju kurss Diskrētā matemātika 5.lekcija Docētājs: Dr. P. Daugulis 2012./2013.studiju

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Algebriskās struktūras 1.lekcija Docētājs: Dr. P. Daugulis 2010./2011.studiju

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Veselo skaitļu teorija 7.lekcija Docētājs: Dr. P. Daugulis 2008./2009.studiju

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Polinomu algebra 11.lekcija Docētājs: Dr. P. Daugulis 2008./2009.studiju

Sīkāk

IEGULDĪJUMS TAVĀ NĀKOTNĒ Projekts Nr. 2009/0216/1DP/ /09/APIA/VIAA/044 NESTRIKTAS KOPAS AR VĒRTĪBĀM PUSGREDZENĀ UN MONĀDES PĀR KATEGORIJU Jāni

IEGULDĪJUMS TAVĀ NĀKOTNĒ Projekts Nr. 2009/0216/1DP/ /09/APIA/VIAA/044 NESTRIKTAS KOPAS AR VĒRTĪBĀM PUSGREDZENĀ UN MONĀDES PĀR KATEGORIJU Jāni IEGULDĪJUMS TAVĀ NĀKOTNĒ Projekts Nr. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044 NESTRIKTAS KOPAS AR VĒRTĪBĀM PUSGREDZENĀ UN MONĀDES PĀR KATEGORIJU Jānis Cīrulis Latvijas Universitāte email: jc@lanet.lv

Sīkāk

Microsoft Word - du_5_2005.doc

Microsoft Word - du_5_2005.doc 005, Pēteris Daugulis BŪLA (BINĀRĀS) FUNKCIJAS UN/VAI MATEMĀTISKĀ LOĢIKA Lietderīgi pētīt funkcijas, kuru argumenti un vērtības ir bināras virknes. Kopa {0,} tiek asociēta ar {jā, nē} vai {patiess, aplams}.

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss SKAITĻU TEORIJA 11.lekcija Docētājs: Dr. P. Daugulis 2012./2013.studiju

Sīkāk

Nevienādības starp vidējiem

Nevienādības starp vidējiem Nevienādības starp vidējiem Mārtin, š Kokainis Latvijas Universitāte, NMS Rīga, 07 Ievads Atrisināt nevienādību nozīmē atrast visus tās atrisinājumus un pierādīt, ka citu atrisinājumu nav. Pierādīt nevienādību

Sīkāk

DAUGAVPILS UNIVERSITĀTE Matemātikas katedra Vjačeslavs Starcevs MATEMĀTISKĀS ANALĪZES SĀKUMU ZINĀTNISKIE PAMATI (izvēles tēmas) 2008

DAUGAVPILS UNIVERSITĀTE Matemātikas katedra Vjačeslavs Starcevs MATEMĀTISKĀS ANALĪZES SĀKUMU ZINĀTNISKIE PAMATI (izvēles tēmas) 2008 DAUGAVPILS UNIVERSITĀTE Matemātikas katedra Vjačeslavs Starcevs MATEMĀTISKĀS ANALĪZES SĀKUMU ZINĀTNISKIE PAMATI (izvēles tēmas) 2008 ANOTĀCIJA Piedāvātie materiāli (izvēles tēmas) ir paredzēti matemātikas

Sīkāk

Pamatelementi statistikā un Hipotēžu pārbaude

Pamatelementi statistikā un Hipotēžu pārbaude Pamatelementi statistikā un Hipotēžu pārbaude J. Valeinis 1 1 Latvijas Universitāte, Rīga 12.marts, 2010 Valeinis Pamatelementi statistikā un Hipotēžu pārbaude p. 1 of 22 Ievads I. Pamatelementi matemātiskajā

Sīkāk

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij

Saturs Sākums Beigas Atpakaļ Aizvērt Pilns ekrāns 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studij 1 DAUGAVPILS UNIVERSITĀTE Dabaszinātņu un matemātikas fakultāte Matemātikas katedra Bakalaura studiju programma Matemātika Studiju kurss Veselo skaitļu teorija 10.lekcija (datoriķiem) Docētājs: Dr. P.

Sīkāk

DAUGAVPILS UNIVERSITĀTE MATEMĀTISKĀS ANALĪZES KATEDRA Armands Gricāns Vjačeslavs Starcevs Lebega mērs un integrālis (individuālie uzdevumi) 2002

DAUGAVPILS UNIVERSITĀTE MATEMĀTISKĀS ANALĪZES KATEDRA Armands Gricāns Vjačeslavs Starcevs Lebega mērs un integrālis (individuālie uzdevumi) 2002 DAUGAVPILS UNIVERSITĀTE MATEMĀTISKĀS ANALĪZES KATEDRA Armands Gricāns Vjačeslavs Starcevs Lebega mērs un integrālis (individuālie uzdevumi) 2002 . variants skaitļiem, kuri var tikt izteikti 5 skaitīšanas

Sīkāk

Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra Inese Bula HAOSS LEKCIJU KONSPEKTS 2008

Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra Inese Bula HAOSS LEKCIJU KONSPEKTS 2008 Latvijas Universitāte Fizikas un matemātikas fakultāte Matemātiskās analīzes katedra Inese Bula HAOSS LEKCIJU KONSPEKTS 2008 SATURS Kursa prasības 3 Nodaļa Nr.1: Pamatjēdzieni 4 Nodaļa Nr.2: Reālu skaitļu

Sīkāk

Simetrija spēlēs Teorija un piemēri, gatavojoties Atklātajai matemātikas olimpiādei 2018./2019. mācību gadā Olimpiādes uzdevumu komplektā katrai klašu

Simetrija spēlēs Teorija un piemēri, gatavojoties Atklātajai matemātikas olimpiādei 2018./2019. mācību gadā Olimpiādes uzdevumu komplektā katrai klašu Simetrija spēlēs Teorija un piemēri, gatavojoties Atklātajai matemātikas olimpiādei 28./29. mācību gadā Olimpiādes uzdevumu komplektā katrai klašu grupai tiek iekļauts algebras, ģeometrijas, kombinatorikas

Sīkāk

2012 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 10. klasei 1. Tā kā LM ir viduslīnija, tad, balstoties uz viduslīnijas īpašībām, trijstūra 1 laukums

2012 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 10. klasei 1. Tā kā LM ir viduslīnija, tad, balstoties uz viduslīnijas īpašībām, trijstūra 1 laukums 01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 10. klasei 1. Tā kā LM ir viduslīnija, tad, balstoties uz viduslīnijas īpašībām, trijstūra 1 laukums būs 1 4 no trijstūra ABC laukuma. Analogi no viduslīnijām

Sīkāk

8.TEMATS RIŅĶI UN DAUDZSTŪRI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_10_SP_08_P1 Ar riņķa līniju saistītie leņķi Sk

8.TEMATS RIŅĶI UN DAUDZSTŪRI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_10_SP_08_P1 Ar riņķa līniju saistītie leņķi Sk 8.TEMTS RIŅĶI UN DUDZSTŪRI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_10_SP_08_P1 r riņķa līniju saistītie leņķi Skolēna darba lapa M_10_UP_08_P1 pvilkts daudzstūris Skolēna

Sīkāk

KONSTITUCIONĀLĀS TIESĪBAS

KONSTITUCIONĀLĀS TIESĪBAS Studiju kursa nosaukums KONSTITUCIONĀLĀS TIESĪBAS Apjoms Apjoms kredītpunktos/ ECTS) 3/ 4,5 120 (stundās) Priekšzināšanas Latvijas valsts un tiesību vēsture, Valsts un tiesību teorija Zinātņu nozare Tiesību

Sīkāk

Speckurss materiālu pretestībā 3. lekcija

Speckurss materiālu pretestībā 3. lekcija Speckurss materiālu pretestībā 3. lekcija Ģeometriski mainīgas un nemainīgas sistēmas Stieņu sistēmu struktūras analīzes uzdevums ir noskaidrot, vai apskatāmā sistēma ir ģeometriski mainīga, vai nemainīga.

Sīkāk

Rīgas Tehniskā universitāte Apstiprinu: Studiju prorektors Uldis Sukovskis Rīga, Programmēšanas valoda JavaScript - Rīga Neformālās izglītī

Rīgas Tehniskā universitāte Apstiprinu: Studiju prorektors Uldis Sukovskis Rīga, Programmēšanas valoda JavaScript - Rīga Neformālās izglītī Rīgas Tehniskā universitāte Apstiprinu: Studiju prorektors Uldis Sukovskis Rīga, 11.04.2019 Programmēšanas valoda JavaScript - Rīga Neformālās izglītības programmas nosaukums 1. Izglītības programmas mērķis

Sīkāk

KURSA KODS

KURSA KODS Lappuse 1 no 5 KURSA KODS STUDIJU KURSA PROGRAMMAS STRUKTŪRA Kursa nosaukums latviski Kursa nosaukums angliski Kursa nosaukums otrā svešvalodā Studiju /-as, kurai/-ām tiek piedāvāts studiju kurss Statuss

Sīkāk

48repol_uzd

48repol_uzd Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 48. OLIMPIĀDE UZDEVUMI 9. klase 48.. Ziāms, ka 48..zīm. attēlots

Sīkāk

32repol_uzd

32repol_uzd Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6-5 matemātikas olimpiādes" LATVIJAS REPUBLIKAS OLIMPIĀDE UZDEVUMI 8 klase Pierādīt, ka neviens no skaitļiem

Sīkāk

Komandu sacensības informātikā un matemātikā Cēsis 2017 Izteiksmes Fināla uzdevumi Aplūkosim aritmētiskas izteiksmes, kurās tiek izmantoti deviņi atšķ

Komandu sacensības informātikā un matemātikā Cēsis 2017 Izteiksmes Fināla uzdevumi Aplūkosim aritmētiskas izteiksmes, kurās tiek izmantoti deviņi atšķ Izteiksmes Aplūkosim aritmētiskas izteiksmes, kurās tiek izmantoti deviņi atšķirīgi viencipara naturāli skaitļi un astoņas aritmētisko darbību zīmes (katra no tām var būt tikai +, -, * vai /). Iekavas

Sīkāk

APSTIPRINĀTS

APSTIPRINĀTS APSTIPRINU: Profesionālās izglītības kompetences centra Liepājas Valsts tehnikums direktors A. Ruperts 2013.gada 7. maijā Profesionālās izglītības kompetenču centrs Liepājas Valsts tehnikums audzēkņu biznesa

Sīkāk

Microsoft Word - Abele

Microsoft Word - Abele LATVIJAS MĀKSLAS AKADĒMIJA Kalpaka bulvāris 13, Rīga, Latvija, LV-1867; Reģ. Nr. 90000029965 tālr.+371 67332202, +371 67221770; fakss +371 67228963 Diploma pielikums ir sastādīts saskaņā ar modeli, kuru

Sīkāk

Studiju programmas nosaukums

Studiju programmas nosaukums Latvijas augstāko izglītības iestāžu ieguldījums mērniecības izglītībā Latvijā Jauno jomas speciālistu sagatavošana Latvijas Lauksaimniecības specialitātē Vivita Puķīte LLU VBF Zemes pārvaldības un ģeodēzijas

Sīkāk

Krājumā saīsinātā pierakstā sniegti pamatskolas ģeometrijas kursā sastopamie galvenie ģeometriskie jēdzieni, figūru īpašības, teorēmu formulējumi un a

Krājumā saīsinātā pierakstā sniegti pamatskolas ģeometrijas kursā sastopamie galvenie ģeometriskie jēdzieni, figūru īpašības, teorēmu formulējumi un a Krājumā saīsinātā pierakstā sniegti pamatskolas ģeometrijas kursā sastopamie galvenie ģeometriskie jēdzieni, figūru īpašības, teorēmu formulējumi un aprēķinu formulas, kas nepieciešamas, risinot uzdevumus.

Sīkāk

ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr.2009/0196/1DP/ /09/IPIA/VIAA/001 Pr

ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr.2009/0196/1DP/ /09/IPIA/VIAA/001 Pr ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr.2009/0196/1DP/1.2.2.1.5/09/IPIA/VIAA/001 Projekta 6.posms: 2012.gada janvāris - aprīlis Balvu

Sīkāk

S-7-1, , 7. versija Lappuse 1 no 5 KURSA KODS STUDIJU KURSA PROGRAMMAS STRUKTŪRA Kursa nosaukums latviski Varbūtību teorija un matemātiskā

S-7-1, , 7. versija Lappuse 1 no 5 KURSA KODS STUDIJU KURSA PROGRAMMAS STRUKTŪRA Kursa nosaukums latviski Varbūtību teorija un matemātiskā Lappuse 1 no 5 KURSA KODS STUDIJU KURSA PROGRAMMAS STRUKTŪRA Kursa nosaukums latviski Varbūtību teorija un matemātiskā statistika I, II Kursa nosaukums angliski A Theory of Probability and Mathematical

Sīkāk

Slide 1

Slide 1 IZM VISC Eiropas Sociālā fonda projekts Dabaszinātnes un matemātika SKOLOTĀJU STUDIJU PROGRAMMU NODARBĪBU MATERIĀLI DABASZINĀTŅU UN MATEMĀTIKAS DIDAKTIKĀ Latvijas Universitāte Liepājas Universitāte Daugavpils

Sīkāk

1

1 . Ļ Uzdevumos. 5. apvelc pareizai atbildei atbilstošo burtu. 75 minūtes ir: 0.75 h.5 h. h.5 h. Sešstūra piramīdas skaldņu skaits ir: 6 7 8. Izteiksmes log vērtība ir: -. Nevienādības x 0atrisinājums ir

Sīkāk

A.Broks Studiju kursa DOMĀŠANAS SISTEMOLOĢIJA nodarbību shematiskie konspekti DS - PRIEKŠVĀRDS

A.Broks Studiju kursa DOMĀŠANAS SISTEMOLOĢIJA nodarbību shematiskie konspekti DS - PRIEKŠVĀRDS DS - PRIEKŠVĀRDS 2012-13 1 DS - PRIEKŠVĀRDS 2012-13 2 DS - PRIEKŠVĀRDS 2012-13 3 Komentāri par studiju kursa b ū t ī b u un s ū t ī b u Būtība veicot sistēmiskās domāšanas kā domāšanas sistēmiskuma apzināšanu,

Sīkāk

PowerPoint Presentation

PowerPoint Presentation No profesijas standarta līdz reformai 2019. gada 16. martā. 19.03.2019 1 Reforma Sieviešu dzimtes vārds Pārkārtojums, pārveidojums, saglabājot galveno no līdzšinējā Pārmaiņa, pārkārtojums kādā sabiedrības

Sīkāk

Nr. p.k.* Transporta līdzekļa marka / modelis Transporta līdzekļa veids Valsts Reģ. Nr. saraksts un sākuma cenas izsolei Stopiņu novada Lī

Nr. p.k.* Transporta līdzekļa marka / modelis Transporta līdzekļa veids Valsts Reģ. Nr. saraksts un sākuma cenas izsolei Stopiņu novada Lī 1 FIAT DOBLO Kravas transporta HA8036 2008 1368 Benzīns 95 159 724 2 (slikts) 1 000.00 826.45 TEC-2, Acone, 2 FIAT DOBLO Kravas transporta HA8085 2008 1368 Benzīns 95 167 599 3 (viduvējs) 1 700.00 1404.96

Sīkāk

PowerPoint Presentation

PowerPoint Presentation ZANE OLIŅA, mācību satura ieviešanas vadītāja Dzīvo patstāvīgi un veselīgi Apzinās sevi, savas vēlmes un intereses, Spēj dzīvot patstāvīgi, saskaņā ar savām vērtībām, Saglabā un nostiprina savas garīgās

Sīkāk

PowerPoint Presentation

PowerPoint Presentation Akadēmiskā personāla darba samaksa Vidzemes Augstskolā Gatis Krūmiņš Vidzemes Augstskolas rektors Iveta Putniņa Vidzemes Augstskolas administratīvā prorektore Vispārējie principi Docēšana Pētniecība Administratīvais

Sīkāk

Microsoft Word - du_4_2005.doc

Microsoft Word - du_4_2005.doc @ 2004 Pēteris Dugulis 1 KOPU APJOMS Kā slīdzināt kops vi skitīt elementus kopās? Dbisks kopu slīdzināšns veids ir ttēlot vienu kopu otrā jeb konstruēt unkcijs no viens kops uz otru. DEFINĪCIJA Divs kops

Sīkāk

7. Tēma: Polinomi ar veseliem koeficientiem Uzdevums 7.1 (IMO1982.4): Prove that if n is a positive integer such that the equation x 3 3xy 2 + y 3 = n

7. Tēma: Polinomi ar veseliem koeficientiem Uzdevums 7.1 (IMO1982.4): Prove that if n is a positive integer such that the equation x 3 3xy 2 + y 3 = n 7. Tēma: Polinomi ar veseliem koeficientiem Uzdevums 7.1 (IMO1982.): Prove that if n is a positive integer such that the equation x xy 2 + y = n has a solution in integers x, y, then it has at least three

Sīkāk

Komandu olimpiāde Bermudu trijstūris Katru uzdevumu vērtē ar 0 5 punktiem. Risināšanas laiks - 3 astronomiskās stundas Uzdevumi 7. klasei 1. Doti 5 sk

Komandu olimpiāde Bermudu trijstūris Katru uzdevumu vērtē ar 0 5 punktiem. Risināšanas laiks - 3 astronomiskās stundas Uzdevumi 7. klasei 1. Doti 5 sk Komandu olimpiāde Bermudu trijstūris Katru uzdevumu vērtē ar 0 5 punktiem. Risināšanas laiks - 3 astronomiskās stundas Uzdevumi 7. klasei 1. Doti 5 skaitļi. Katru divu skaitļu summa ir lielāka par 4. Pierādīt,

Sīkāk

DAUGAVPILS UNIVERSITĀTES LIETU NOMENKLATŪRA 2016

DAUGAVPILS UNIVERSITĀTES LIETU NOMENKLATŪRA 2016 DAUGAVPILS UNIVERSITĀTES LIETU NOMENKLATŪRA 2016 Rektors APSTIPRINU Daugavpils Universitātes A.Barševskis 2015.gada 15.decembrī Daugavpilī shēma Indeksi Struktūrvienība 1 Satversmes sapulce 2 Senāts 3

Sīkāk

Prezentacija

Prezentacija LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Galvenie nosacījumi reflektantu uzņemšanai pamatstudijās 2016./2017. studiju gadam UZŅEMŠANAS KOMISIJA Lielā iela 2, 180.telpa, Jelgava, LV-3001 Tālr.: 20227755,

Sīkāk

APSTIPRINĀTS ar LKA Senāta sēdes Nr. 9 lēmumu Nr gada 19. decembrī NOLIKUMS PAR PĀRBAUDĪJUMIEM AKADĒMISKAJĀS BAKALAURA UN MAĢISTRA STUDIJU PR

APSTIPRINĀTS ar LKA Senāta sēdes Nr. 9 lēmumu Nr gada 19. decembrī NOLIKUMS PAR PĀRBAUDĪJUMIEM AKADĒMISKAJĀS BAKALAURA UN MAĢISTRA STUDIJU PR APSTIPRINĀTS ar LKA Senāta sēdes Nr. 9 lēmumu Nr. 8 2016. gada 19. decembrī NOLIKUMS PAR PĀRBAUDĪJUMIEM AKADĒMISKAJĀS BAKALAURA UN MAĢISTRA STUDIJU PROGRAMMĀS LATVIJAS KULTŪRAS AKADĒMIJĀ Izdots saskaņā

Sīkāk

skaitampuzle instrukcija

skaitampuzle instrukcija MUZLE SKAITĀMPUZLE UZDEVUMU VARIANTI ARITMĒTIKAS PAMATU APGŪŠANAI. 1. 1. Saliek pamatni ar 10 rindām (pirmajā rindā 1 kauliņš, apakšējā 10 kauliņi). Kauliņus aiz apļiem atstāj tukšus. Skaita kauliņus katrā

Sīkāk

PowerPoint Presentation

PowerPoint Presentation Konference Starpdisciplinaritāte, radošums un uzņēmība mūsdienu izglītības aktualitātes, 2014. gada 29. oktobris ESF projekts Atbalsts izglītības pētījumiem 2011/0011/1DP/1.2.2.3.2/11/IPIA/VIAA/001 Pētījums

Sīkāk

Slide 1

Slide 1 Pasaules valstu izglītības sistēmas Japāna Vēsturisks apskats Skolu sistēmas aizsākumi Japānā no 1603 gada. Mācījās samuraju bērni, galvenais izglītības saturs bija konfuciānisma klasika, lielākā vērtības

Sīkāk

DAUGAVPILS UNIVERSITĀTES LIETU NOMENKLATŪRA 2017

DAUGAVPILS UNIVERSITĀTES LIETU NOMENKLATŪRA 2017 DAUGAVPILS UNIVERSITĀTES LIETU NOMENKLATŪRA 2017 Rektors APSTIPRINU Daugavpils Universitātes A.Barševskis 2016.gada 19.decembrī Daugavpilī shēma Indeksi Struktūrvienība 1 Satversmes sapulce 2 Senāts 3

Sīkāk

Studiju programmas raksturojums

Studiju programmas raksturojums Studiju programmas raksturojums Doktora studiju programma Politikas zinātne studiju programmas nosaukums 2015./2016. akadēmiskais gads 1. Studiju programmas nosaukums, iegūstamais grāds, profesionālā kvalifikācija

Sīkāk

Sabiedrība ar ierobežotu atbildību “Biznesa augstskola Turība”

Sabiedrība ar ierobežotu atbildību “Biznesa augstskola Turība” SIA Biznesa augstskola Turība Vienotais reģistrācijas Nr.40003135880 Graudu ielā 68, Rīgā, LV-1058 N97 APSTIPRINĀTS Biznesa augstskola Turība Senāta 28.02.2018. sēdē, protokols Nr.3 SIA Biznesa augstskola

Sīkāk

APSTIPRINĀTS

APSTIPRINĀTS Preiļu novada dome Preiļu 1. pamatskola Reģ. Nr. 4212900356 Daugavpils ielā 34, Preiļu novadā, LV-5301, Tālruņi: 65322749, 65322084, e-pasts: preilu1psk@pvg.edu.lv APSTIPRINĀTS ar Preiļu 1.pamatskolas

Sīkāk

2019 QA_Final LV

2019 QA_Final LV 2019. gada ex-ante iemaksas Vienotajā noregulējuma fondā (VNF) Jautājumi un atbildes Vispārēja informācija par aprēķinu metodoloģiju 1. Kāpēc salīdzinājumā ar pagājušo gadu ir mainījusies aprēķinu metode,

Sīkāk

APSTIPRINĀTI ar Latvijas Kultūras akadēmijas Senāta sēdes Nr. 9 lēmumu Nr gada 17. decembrī. Grozījumi ar Senāta sēdes Nr. 1 lēmumu Nr

APSTIPRINĀTI ar Latvijas Kultūras akadēmijas Senāta sēdes Nr. 9 lēmumu Nr gada 17. decembrī. Grozījumi ar Senāta sēdes Nr. 1 lēmumu Nr APSTIPRINĀTI ar Latvijas Kultūras akadēmijas Senāta sēdes Nr. 9 lēmumu Nr. 4 2012. gada 17. decembrī. Grozījumi ar Senāta sēdes Nr. 1 lēmumu Nr. 8 2019. gada 21. janvārī Noteikumi par studiju kursu akadēmisko

Sīkāk

PowerPoint Presentation

PowerPoint Presentation Šeit top veiksmīgas karjeras Nāc studēt Jelgavā! LLU rektore, profesore Irina Pilvere 25.08.2015 www.llu.lv Vieta virsrakstam, teksts vienā kolonnā Šeit top veiksmīgas karjeras! LLU ir ceturtā lielākā

Sīkāk

Latvijas Republika BAUSKAS NOVADA DOME BAUSKAS 2. VIDUSSKOLA Reģ. Nr , Dārza iela 9, Bauska, Bauskas nov., LV-3901 tālrunis/fakss ,

Latvijas Republika BAUSKAS NOVADA DOME BAUSKAS 2. VIDUSSKOLA Reģ. Nr , Dārza iela 9, Bauska, Bauskas nov., LV-3901 tālrunis/fakss , Latvijas Republika BAUSKAS NOVADA DOME BAUSKAS 2. VIDUSSKOLA Reģ. Nr. 4513901295, Dārza iela 9, Bauska, Bauskas nov., LV-3901 tālrunis/fakss 63922473, e-pasts: 2.vidusskola@bauska.lv, www.bauska.lv APSTIPRINĀTI

Sīkāk

PowerPoint Presentation

PowerPoint Presentation Darbības programmas Izaugsme un nodarbinātība PROJEKTA SAM 8.2.1. ĪSTENOŠANA DAUGAVPILS UNIVERSITĀTĒ Starpdisciplinārais seminārs Daugavpils Universitātē, 06.11.2018. Eiropas Sociālā fonda projekta Daugavpils

Sīkāk

PM_Izglītības _prasības_v.1.1

PM_Izglītības _prasības_v.1.1 Valsts atbalsta programma dzīvojamās telpas iegādei vai būvniecībai PALĪGMATERIĀLS PAR IZGLĪTĪBU PAMATOJOŠAJIEM DOKUMENTIEM MĀJOKĻU GARANTIJU PROGRAMMĀ Mājokļu garantijas VAR piešķirt personām, kuras ieguvušas

Sīkāk

Latvijas 67. matemātikas olimpiādes 2. posma uzdevumi 5. klase Katru uzdevumu vērtē ar 0 10 punktiem 1. Uz autoceļa Brauc un piesprādzējies ir trīs br

Latvijas 67. matemātikas olimpiādes 2. posma uzdevumi 5. klase Katru uzdevumu vērtē ar 0 10 punktiem 1. Uz autoceļa Brauc un piesprādzējies ir trīs br 5. klase 1. Uz autoceļa Brauc un piesprādzējies ir trīs braukšanas joslas. Pa pirmo joslu jābrauc ar ātrumu no 50 līdz 70 kilometriem stundā, pa otro joslu ar ātrumu no 90 līdz 110 kilometriem stundā,

Sīkāk

LATVIJAS UNIVERSITĀTE

LATVIJAS UNIVERSITĀTE LATVIJAS UNIVERSITĀTE ERASMUS+ PROGRAMMAS MOBILITĀTES ORGANIZĒŠANAS KĀRTĪBA LATVIJAS UNIVERSITĀTĒ Pielikums APSTIPRINĀTS ar LU 18.12.2014. rīkojumu Nr.1/363 Ar grozījumiem, kas izdarīti līdz 04.08.2015.

Sīkāk

KURSA KODS

KURSA KODS Lappuse 1 no 5 KURSA KODS Kursa nosaukums latviski Kursa nosaukums angliski Kursa nosaukums otrā svešvalodā (ja kursu docē krievu, vācu vai franču valodā) Studiju programma/-as, kurai/-ām tiek piedāvāts

Sīkāk

Microsoft Word - +Supervizijas dienas_21.09.docx

Microsoft Word - +Supervizijas dienas_21.09.docx Datums Supervizors Pasākums Laiks Vieta Pieteikšanās 30.10.2017. Simona Orinska, Mg. sc. sal., Mag.art., mākslas terapeite 11:00 16:00 MĀ TELPA mākslu terapijas, mākslinieku rezidenču un izglītības centrs,

Sīkāk

Microsoft Word - Lekcija_Nr3.doc

Microsoft Word - Lekcija_Nr3.doc INFORMĀCIJAS MEKLĒŠANA Jebkuru pētniecības darbu uzsākot, pētniekam ir jāiepazīstas ar informāciju par risināmo jautājumu, t.i., pēc iespējas pilnīgi jāizstudē pieejamā literatūra, kas attiecas uz izraudzīto

Sīkāk

S-7-1, , 7. versija Lappuse 1 no 5 KURSA KODS VadZPB10 STUDIJU KURSA PROGRAMMAS STRUKTŪRA Kursa nosaukums latviski Inovāciju vadība un ekoi

S-7-1, , 7. versija Lappuse 1 no 5 KURSA KODS VadZPB10 STUDIJU KURSA PROGRAMMAS STRUKTŪRA Kursa nosaukums latviski Inovāciju vadība un ekoi Lappuse 1 no 5 KURSA KODS VadZPB10 STUDIJU KURSA PROGRAMMAS STRUKTŪRA Kursa nosaukums latviski Inovāciju vadība un ekoinovācija Kursa nosaukums angliski Innovation Management and Eco Innovation Kursa nosaukums

Sīkāk

1

1 8. Datu struktūras un aritmētika Nodaļas saturs 8. Datu struktūras un aritmētika...8-1 8.1. Vienkāršie datu objekti...8-1 8.2. Datu apviešana struktūrās, izmantojot funktorus...8-1 8.3. Terma jēdziena

Sīkāk

LV IEVĒRO: VISAS LAPASPUŠU NORĀDES ATTIECAS UZ SPĒLES KOMPLEKTĀ IEKĻAUTO SPĒLES NOTEIKUMU GRĀMATIŅU. SPĒLES KOMPLEKTS: 12 pentamino, 5 sarkani klucīši

LV IEVĒRO: VISAS LAPASPUŠU NORĀDES ATTIECAS UZ SPĒLES KOMPLEKTĀ IEKĻAUTO SPĒLES NOTEIKUMU GRĀMATIŅU. SPĒLES KOMPLEKTS: 12 pentamino, 5 sarkani klucīši LV IEVĒRO: VISAS LAPASPUŠU NORĀDES ATTIECAS UZ SPĒLES KOMPLEKTĀ IEKĻAUTO SPĒLES NOTEIKUMU GRĀMATIŅU. SPĒLES KOMPLEKTS: 12 pentamino, 5 sarkani klucīši, 3 brūni klucīši, 1 spēles laukums, 1 barjera izvēlētā

Sīkāk

Preču loterijas Apturi mirkli ar Mentos! noteikumi. 1. PREČU IZPLATĪTĀJS: 1.1. SIA Daisena Latvia (uzņēmuma reģistrācijas numurs: , juridis

Preču loterijas Apturi mirkli ar Mentos! noteikumi. 1. PREČU IZPLATĪTĀJS: 1.1. SIA Daisena Latvia (uzņēmuma reģistrācijas numurs: , juridis Preču loterijas Apturi mirkli ar Mentos! noteikumi. 1. PREČU IZPLATĪTĀJS: 1.1. SIA Daisena Latvia (uzņēmuma reģistrācijas numurs: 40003766195, juridiskā adrese: Biksēres iela 6, Rīga, LV-1073). 2. LOTERIJAS

Sīkāk

APSTIPRINĀTS

APSTIPRINĀTS APSTIPRINĀTS ar Izglītības un zinātnes ministrijas 2003. gada 3. jūnijs rīkojumu Nr. 262 PROFESIJAS STANDARTS Reģistrācijas numurs PS 0176 Profesija Psihologa asistents Kvalifikācijas līmenis 5 Nodarbinātības

Sīkāk

Social Activities and Practices Institute 1 Victor Grigorovich Street, Sofia 1606, Bulgaria Phone: Kas ir

Social Activities and Practices Institute 1 Victor Grigorovich Street, Sofia 1606, Bulgaria Phone: Kas ir Kas ir interaktīvās studijas? Iztrādāja: Nelija Petrova-Dimitrova Uzdevums 1 Interaktīvās studijas ir mijiedarbība, nevis iedarbība! Uzdevums 2 Interaktīvo studiju pamatā ir grupas dinamika! Grupa ir apmācību

Sīkāk

Kas mums izdodas un ko darīsim tālāk?

Kas mums izdodas un ko darīsim tālāk? Kas mums izdodas un ko darīsim tālāk? 08.06.2016. Kā notiek aprobācijas pētījums? Pētījumos balstītu piemēru radīšana (research based design) Piemēru un modeļu izstrāde Teorētiskais pamatojums un modelis

Sīkāk

Mobila Satura pakalpojumu kodeksa projekts

Mobila Satura pakalpojumu kodeksa projekts Mobilo satura pakalpojumu kodekss 1. Ievads 1.1 Satura pakalpojumu piedāvājums arvien paplašinās, ko veicina straujā mobilo tehnoloģiju attīstība un mobilo sakaru Lietotāju augošā vajadzība pēc aizvien

Sīkāk

PROFESIJAS STANDARTA PARAUGS

PROFESIJAS STANDARTA PARAUGS APSTIPRINĀTS ar Izglītības un zinātnes ministrijas 2002. gada 16. maija rīkojumu Nr. 283 PROFESIJAS STANDARTS Reģistrācijas numurs PS 0061 Profesija Sausās būves celtnieks Kvalifikācijas līmenis 2 Nodarbinātības

Sīkāk

Slide 1

Slide 1 Lifelong Learning Grundtvig Partnership Project 2012-1-LV1-GRU06-03580 1 How to Ensure Qualitative Lifelong Learning for Different Age Groups Adult education teachers will discuss the ways how to involve

Sīkāk

GAISA TEMPERATŪRAS ĢEOGRĀFISKAIS SADALĪJUMS LATVIJĀ PIE ATŠĶIRĪGIEM GAISA MASU TIPIEM

GAISA TEMPERATŪRAS ĢEOGRĀFISKAIS SADALĪJUMS LATVIJĀ PIE ATŠĶIRĪGIEM GAISA MASU TIPIEM Klimata pārmaiņu raksturs Latvijas klimata mainība A.Briede, M.Kļaviņš, LU ĢZZF Globālās klimata izmaiņas- novērojumi un paredzējumi ES mājas Sarunu istaba, 2012.gada 16.maijā Gaisa temperatūras raksturs

Sīkāk

7.-9. Elfrīda Kokoriša Jekaterina Semenkova- Lauce Mācību satura un valodas apguve matemātikā Mācību līdzeklis skolēnam Projekts «Atbalsts valsts valo

7.-9. Elfrīda Kokoriša Jekaterina Semenkova- Lauce Mācību satura un valodas apguve matemātikā Mācību līdzeklis skolēnam Projekts «Atbalsts valsts valo 7.-9. Elfrīda Kokoriša Jekaterina Semenkova- Lauce Mācību satura un valodas apguve matemātikā Mācību līdzeklis skolēnam Projekts «Atbalsts valsts valodas apguvei un bilingvālajai izglītībai» Nr. 008/000/DP/.../08/IPIA/VIAA/00

Sīkāk

PowerPoint Presentation

PowerPoint Presentation Rīgas Tehniskās universitātes Ģeomātikas katedra LU 77. SZK sekcija «Ģeodinamika un ģeokosmiskie pētījumi 2019» Jānis Kaminskis, Mārtiņš Reiniks, Anete Kiopa 22.03.2019. 1 Atrašanās vieta 2 56 56'39.3"N

Sīkāk

Rektora rīkojums

Rektora rīkojums RĪGAS STRADIŅA UNIVERSITĀTE Reģistrācijas Nr. 90000013771 Dzirciema 16, Rīga, LV-1007, Latvija Tālr. 67409230, fakss 67471815 E-pasts: rsu@rsu.lv, www.rsu.lv REKTORA RĪKOJUMS 21.01.2019 Rīgā Nr. 5-1/32/2019

Sīkāk

SV_Mehanika_parskats_2014_2015

SV_Mehanika_parskats_2014_2015 Latvijas Lauksaimniecības universitāte STUDIJU VIRZIENA Mehānika un metālapstrāde, siltumenerģētika, siltumtehnika un mašīnzinības PĀRSKATS par 2014./2015. studiju gadu Apstiprināts Senātā 09.12.2015.

Sīkāk

Pārbaudes darbs. Varbūtību teorija elementi. 1.variants Skolēna vārds,uzvārds... 1.uzdevums. ( 1punkts) Kurš no notikumiem ir drošs notikums: a) nākoš

Pārbaudes darbs. Varbūtību teorija elementi. 1.variants Skolēna vārds,uzvārds... 1.uzdevums. ( 1punkts) Kurš no notikumiem ir drošs notikums: a) nākoš Pārbaudes darbs. Varbūtību teorija elementi. 1.variants Skolēna vārds,uzvārds... 1.uzdevums. ( 1punkts) Kurš no notikumiem ir drošs notikums: a) nākošais auto, kas iebrauks manā ielā, būs zilā krāsā; b)

Sīkāk

ro41_uzd

ro41_uzd Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 4 OLIMPIĀDE 5 klase 4 Dots, ka a

Sīkāk

LU 68 Fizikas sekcija DocBook

LU 68 Fizikas sekcija DocBook Vispārizglītojošās e-fizikas materiālu augstas kvalitātes noformējuma izstrāde, izmantojot DocBook un LaTeX tehnoloģijas Arnis Voitkāns LU 68. konferences Fizikas didaktikas sekcija 5.02.2010. Kas ir augstas

Sīkāk

30repol_atr

30repol_atr Materiāls ņemts o grāmatas: Adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas Republias 6.-. matemātias olimpiādes" LATVIJAS REPUBLIKAS 0. OLIMPIĀDE ATRISINĀJUMI 0.. Vieādojumu pārveidojam formā ( x + )

Sīkāk

PowerPoint Presentation

PowerPoint Presentation DAUGAVPILS UNIVERSITĀTES STUDIJU PROGRAMMAS SKOLOTĀJA KVALIFIKĀCIJAS IEGŪŠANAI Prof. Arvīds Barševskis LR Saeimas Ilgtspējīgas attīstības komisijas un Izglītības un zinātnes ministrijas praktiskā konference

Sīkāk

KOCĒNU NOVADA DOME Reģistrācijas Nr Alejas iela 8, Kocēni, Kocēnu pag., Kocēnu nov., LV 4220 Tālrunis , fakss , e-pasts:

KOCĒNU NOVADA DOME Reģistrācijas Nr Alejas iela 8, Kocēni, Kocēnu pag., Kocēnu nov., LV 4220 Tālrunis , fakss , e-pasts: KOCĒNU NOVADA DOME Reģistrācijas Nr. 90009114171 Alejas iela 8, Kocēni, Kocēnu pag., Kocēnu nov., LV 4220 Tālrunis 64207690, fakss 64207688, e-pasts: info@kocenunovads.lv PUBLISKO IEPIRKUMU KOMISIJA Kocēnu

Sīkāk

Studiju kursu apraksta struktūra

Studiju kursu apraksta struktūra Saskaņots: Akadēmiskā darba prorektors asoc.prof. V. Bernhofs Studiju virzienu Mākslas un Izglītība, pedagoģija un sports profesionālā bakalaura studiju programmu STUDIJU KURSU MODUĻA APRAKSTS Studiju

Sīkāk

Mūsu programmas Programmu ilgums 1 semestris 15 nodarbības 1,5 h nodarbības ilgums

Mūsu programmas Programmu ilgums 1 semestris 15 nodarbības 1,5 h nodarbības ilgums Mūsu programmas Programmu ilgums 1 semestris 15 nodarbības 1,5 h nodarbības ilgums Algoritmika un datorzinības (Vecums: 8 gadi) Kursa mērķis ir sniegt bērniem kopīgo izpratni par datoru un datorprogrammām.

Sīkāk

SIA Estonian, Latvian & Lithuanian Environment Trokšņa stratēģisko karšu izstrāde valsts reģionālā autoceļa P100 Jelgava Dalbe posmam no Ozolniekiem l

SIA Estonian, Latvian & Lithuanian Environment Trokšņa stratēģisko karšu izstrāde valsts reģionālā autoceļa P100 Jelgava Dalbe posmam no Ozolniekiem l SIA Estonian, Latvian & Lithuanian Environment Trokšņa stratēģisko karšu izstrāde valsts reģionālā autoceļa P100 Jelgava Dalbe posmam no Ozolniekiem līdz autoceļam A8 Rīga Jelgava Lietuvas robeža (Meitene)

Sīkāk

• ATKLĀTS KONKURSS saskaņā ar Publisko iepirkumu likuma 8.panta pirmās daļas 1.punktu un Ministru kabineta 2017.gada 28.februāra noteikumu Nr.107 Iepirkuma procedūru un metu konkursu norises kārtība 2.1.apakšnodaļu

Sīkāk

PAMATNOSTĀDNES PAR SFPS 9 PĀREJAS PASĀKUMU VIENOTU INFORMĀCIJAS ATKLĀŠANU EBA/GL/2018/01 16/01/2018 Pamatnostādnes par vienotu informācijas atklāšanu

PAMATNOSTĀDNES PAR SFPS 9 PĀREJAS PASĀKUMU VIENOTU INFORMĀCIJAS ATKLĀŠANU EBA/GL/2018/01 16/01/2018 Pamatnostādnes par vienotu informācijas atklāšanu EBA/GL/2018/01 16/01/2018 Pamatnostādnes par vienotu informācijas atklāšanu saskaņā ar Regulas (ES) Nr. 575/2013 473.a pantu attiecībā uz pārejas pasākumiem saistībā ar SFPS 9 par pašu kapitālu ieviešanas

Sīkāk

KŪDRAS ĪPAŠĪBU PĒTĪJUMI DAŽĀDI IETEKMĒTAJĀS LAUGAS PURVA TERITORIJĀS

KŪDRAS ĪPAŠĪBU PĒTĪJUMI DAŽĀDI IETEKMĒTAJĀS LAUGAS PURVA TERITORIJĀS KŪDRAS ĪPAŠĪBU IZMAIŅAS DABAS APSTĀKĻU UN CILVĒKA DARBĪBAS IETEKMES REZULTĀTĀ Laimdota KALNIŅA 1,5, Jānis Dreimanis 1, Ilze OZOLA 2, Elīza PLATPĪRE 1,2, ReInis BITENIEKS 1, Inārs DREIMANIS 3, Ingrīda KRĪGERE

Sīkāk

Rīgā

Rīgā APSTIPRINĀTS ar Privātās pamatskolas un Rīgas ģimnāzijas Maksima direktora 2016. gada 01.septembra rīkojumiem Nr. 78/47 IEKŠĒJIE NOTEIKUMI Rīgā METODISKĀS KOMISIJAS REGLAMENTS Izdots saskaņā Vispārējās

Sīkāk

2015 Finanšu pārskats

2015 Finanšu pārskats 2015 2 Neatkarīgā revidenta ziņojums akcionāriem Ziņojums par finanšu pārskatiem Mēs esam revidējuši pievienotos ( Uzņēmums ) finanšu pārskatus, kas ietver 2015. gada 31. decembra bilanci, ienākumu pārskatu,

Sīkāk

Latvijas 43. astronomijas atklātās olimpiādes neklātienes kārta gada 16. aprīlī 1. TESTS Izvēlies tikai vienu atbildi 1. Kurš no šiem zvaigznāji

Latvijas 43. astronomijas atklātās olimpiādes neklātienes kārta gada 16. aprīlī 1. TESTS Izvēlies tikai vienu atbildi 1. Kurš no šiem zvaigznāji Latvijas 43. astronomijas atklātās olimpiādes neklātienes kārta 2015. gada 16. aprīlī 1. TESTS Izvēlies tikai vienu atbildi 1. Kurš no šiem zvaigznājiem Latvijā nekad nenoriet? (1 p) Kasiopeja Ērglis Vēršu

Sīkāk

7th annual International scientific conference "New dimensions in the development of society" Dedicated to the 10th anniversary of the Faculty of Soci

7th annual International scientific conference New dimensions in the development of society Dedicated to the 10th anniversary of the Faculty of Soci STUDENTU VAJADZĪBAS PROFESIONĀLĀS ANGĻU VALODAS STUDIJU KURSĀ LLU STUDENTS' NEEDS IN ESP AT LATVIA UNIVERSITY OF AGRICULTURE Ieva Knope, Mg Paed. LLU/ Department of Languages knopeieva@inboxx.lv tel. +37129427849

Sīkāk

Riski: identificēšana un mērīšana

Riski: identificēšana un mērīšana Risku vadība apdrošināšanā Risku identificēšana un mērīšana Jolanta Krastiņa, FAA Latvijas Aktuāru Asociācija 01.12.2011 Saturs Ievads risku vadībā mērķis, ERM, risku vadības process Risku identifikācija

Sīkāk

2013 Finanšu pārskats

2013 Finanšu pārskats 2013 2 Neatkarīgo revidentu ziņojums akcionāriem Ziņojums par finanšu pārskatiem Esam veikuši auditu klāt pievienotajiem ( Uzņēmums ) finanšu pārskatiem, kas sastāv no 2013.gada 31.decembra bilances, ienākumu

Sīkāk

Apstiprināts Latvijas farmaceitu biedrības valdes gada 30. maija sēdē, prot. Nr. 17 Ar grozījumiem līdz LFB valdes sēdei gada 18. oktobrī,

Apstiprināts Latvijas farmaceitu biedrības valdes gada 30. maija sēdē, prot. Nr. 17 Ar grozījumiem līdz LFB valdes sēdei gada 18. oktobrī, Apstiprināts Latvijas farmaceitu biedrības valdes 2012. gada 30. maija sēdē, prot. Nr. 17 Ar grozījumiem līdz LFB valdes sēdei 2018. gada 18. oktobrī, prot. Nr. 9 Dokumenta mērķis: Dokumentā aprakstīti

Sīkāk

PowerPoint Presentation

PowerPoint Presentation Šeit top veiksmīgas karjeras Galvenie nosacījumi reflektantu uzņemšanai pamatstudijās 2019./2020. studiju gadam Uzņemšanas komisija Lielā iela 2, 180.telpa, Jelgava, LV-3001 Tālr.: 20227755, e-pasts: ukom@llu.lv

Sīkāk